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Abstract

We analyze the locomotor behavior of the rat during exploration, and show that digitally collected data (time series of
positions) provide a sufftcient basis for establishing that the rat uses several distinct modes of motion (first, second, third, and
sometimes fourth gear). The distinction between these modes is obtained by first segmenting the time series into sequences of data
points occurring between arrests (as ascertained within the resolution of the data acquisition system). The statistical distribution
of the maximal amount of motion occurring within each of these episodes is then analyzed and shown to be multi modal. This
enables us to decompose motion into distinct modes. In one application of this decomposition we show that the ethological ad
hoc notion of stopping behavior corresponds to progression without leaving first gear. We do so by showing that the spatial
spread of such progressions is confined to a small 20–50 cm range in a 6.5 m diameter arena. This provides a justification for a
construct of ‘staying in place’. This construct is not defined in terms of position in objective space, but purely in terms of the rat’s
own behavior. We test the generality of our method by applying it to mouse exploratory behavior. © 2000 Elsevier Science B.V.
All rights reserved.
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1. General introduction

This paper consists of three parts. In the first we
show that given a time series of the coordinates of an
exploring rat, one can decompose the behavior into
several distinct modes of motion (first, second, third,
and sometimes fourth gear). In the second part we
illustrate the usefulness of the method, by showing that
what has previously been labeled as stopping in rats,
really corresponds to progression without leaving first
gear. Finally, we test the generality of our method by
analyzing locomotor behavior in mice, and discuss the
implications of this methodology for the isolation of
animal-defined places and for high throughput pheno-
typing of rodent behavior.

We begin by describing the statistical tools used
throughout all parts of the paper so that the reader
may refer back to them as the need arises.

2. Statistical methods

2.1. Density estimators

Density estimators (Silverman, 1980) are smoothed
versions of histograms. They use moving bin location
to obtain a more precise estimate of the concentration
of observations at a given value. In this way the discon-
tinuities displayed in the histogram, which are an artifi-
cial result of the non-overlapping bins, can be avoided,
and better estimates are obtained. The curves obtained
through a density estimator involve a choice of degree
of smoothing. We choose the minimal degree of
smoothing for which small random fluctuations are
smoothed, while genuine features are not ironed away
(Silverman, 1980).
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2.2. The gaussian mixture model

This model is used for recognizing distinct compo-
nents within a population. When subjected to elec-
trophoresis, for example, a mixture of distinct proteins
ideally yields a perfect separation of the mixture into its
components, i.e. all the molecules of each component
lie precisely at a distance determined by their specific
mass. In practice, however, the distance a particular
molecule travels is affected by, e.g. convection. As a
result, the distances traveled by each type of molecule
form a gaussian distribution entered at the specific
distance. When plotting concentration against distance
from origin, one gets a single curve showing peaks
corresponding to the medians of each gaussian. Given a
protein mixture, the number of peaks in the curve
corresponds to the number of components. The actual
proportion of each component can be estimated by
fitting a gaussian mixture model to the empirical curve.
This model consists of a sum of distinct gaussians
weighted by their corresponding proportions. Note that
the model is applicable regardless of whether the indi-
vidual gaussians partially overlap. We shall use the
gaussian mixture model to analyze the rat’s modes of
motion.

2.3. Estimation of the parameters in the mixture model

The parameters of the model are estimated by using
the Expectation–Maximization (EM) algorithm. The
algorithm estimates the maximum likelihood parame-
ters (proportions, means, and SDs) of a mixture with a
given number of components. EM is an iterative al-
gorithm that starts with user-given initial values, and
incrementally improves the likelihood function until
further iterations yield only a negligible improvement.
The actual number of components of the model is
determined by comparing the maximum likelihood
value of a n-components mixture with that of a (n−1)-
components mixture until the increased number of
components increases the likelihood only marginally.
More precisely, the spurious character of the n-th com-
ponent is manifested through the fact that the log of the
ratio of the likelihood of n components over that of
n− l components is distributed like x2 with two degrees
of freedom (henceforth x2

2). For an easy exposition see
Everitt (1981).

Based on this approach we use the following proce-
dure for estimating the number of components: for
each possible value, n, of the number of components
(starting with one, i.e. a pure gaussian model) compute
with EM the maximal likelihood value p(n) for a model
with n components. Then compute log[p(n+1)/p(n)].
Initially, each additional component improves the
likelihood by several orders of magnitude. For a certain
number of components, call it k, this improvement

ceases to be statistically significant [at the 0.01 level]
and we can then set k as the estimated number of
components. We then adopt as our model for the data
the gaussian mixture with k components and with
parameters (proportion, mean, and SD, for each com-
ponent) yielding maximum likelihood among models
with k components.

3. Part I: the decomposition of locomotor behavior into
distinct modes

When placed in a large novel arena, rats alternate
between full arrests, partial arrests involving scanning
and stepping, walking, and running. We do not know a
priori whether these categories represent convenient ad
hoc landmarks within a continuum, or whether they
stand for distinct and perhaps also discrete natural
building blocks of behavior.

3.1. Materials and methods

3.1.1. Experimental animals
Subjects were eight juvenile Long Evans hooded rats

(Department of Animal Breeding, Weizmann Institute
of Science, Rehovot, Israel). Rats (four males and four
females) were 43 days old at the onset of the observa-
tions, and 52 days old at their end. From the age of 14
days and on they were kept in two 35×25×15 cm
cages connected by a 15 cm diameter black plastic pipe
which was used as a shelter. Each rat was handled daily
for 10 min and exposed to a variety of environments for
another 10 min. This protocol was followed until the
observation period.

3.1.2. Testing en6ironment
Observations were performed in a 6.5 m diameter

arena with a concrete floor and 40 cm high walls.
Several large objects (distal landmarks) were placed
outside. A pipe, similar to the one used by the rats in
their cage and the only object in the arena that could be
used as a hiding place, was inserted through the wall,
just above floor level, and sealed. Fifteen flat small
objects (proximal landmarks) were randomly placed at
a 20–150 cm distance from the walls. The circle’s center
was, therefore, empty. The environment was thus polar-
ized by creating a distance gradient from the familiar
pipe, and a gradient between the wall and the empty
central area (Fig. 1).

3.1.3. Session planning and recording procedure
Each rat was exposed to the arena for ten successive

30 min daily sessions. Observations were performed at
night under artificial lights. The rat was placed near the
pipe, and its behavior was recorded throughout the
session by a stationary video camera whose lens cov-
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ered the whole arena. Immediately afterwards the rat
was returned to its cage.

3.1.4. Data acquisition and processing
The rat’s path was recorded by an automated track-

ing system including a Telcom T/800/900 time-coding
system, and software developed in our lab. The
recorded X, Y coordinates were transformed to the real
coordinates of the rat’s location. These coordinates and
timing were recorded as soon as movement was de-
tected by the system. The spatial sensitivity of the
system was set to 6 cm, with a temporal resolution of
up to 20 frames per second.

The size of the arena acts as an indirect filter of small
movements, inasmuch as the number of pixels occupied
by the image of the rat is small relative to the size of the
image of the arena. The objective size of a motion that
is undetectable by the tracking system is therefore much
bigger than it would be in, say, a 60×60 cm box.

3.2. Results

Our data consist of coordinates of the moving animal
(considered as a point) sampled at 10 Hz. The distinc-
tion between the different modes of motion is obtained
by first segmenting the time series into sequences of
data points occurring between arrests (as ascertained by
establishing the noise level of the data acquisition sys-
tem). Intervals between two arrests constitute the build-
ing blocks for further analysis; we call them episodes of
motion Even a cursory examination of these episodes

reveals that some of them evolve into full-blown mo-
tion episodes whereas others succumb into arrest before
acquiring significant velocity. In the next stage of anal-
ysis we therefore classify these episodes according to the
maximal amount of motion reached within each of
them (in much the same way as one would characterize
mountains by peaks rather than by mean heights).

Analysis of the distribution of the maximal amounts
of motion within episodes reveals that they are natu-
rally clustered around three, and sometimes four dis-
tinct values. This yields, through the fitting of a
Gaussian mixture model, a computable decomposition
of the episodes into three or sometimes four modes.

3.2.1. Identifying points of arrest
In order to identify points of arrest we need to

estimate the amount of motion within a temporal win-
dow and determine a threshold value under which a
data point will be counted as arrest. This task is
constrained by the fact that in hooded rats, the shortest
arrests have a duration of 0.4 s (established by direct
measurement of videotaped behavior). The danger of
failing to reveal these stops precludes the use of wider
temporal windows, such as would be necessary for the
computation of velocity (Cleveland, 1977). We there-
fore compute the SD of the distances of the data points
to their mean, within a sliding 0.4 s window.

This procedure attributes to the data point at the
center of the window a numerical value that summa-
rizes the spatial spread of the motion in the window.
We denote it for each data point, pt, by SD (pt). When
moving at constant velocity the SD is a linear function
of velocity. The arrests are found by studying the
statistical distribution of SD and determining a
threshold value. We cross-check the results of two
methods in order to determine the threshold that corre-
sponds to the noise level of the tracking system. First
we exploit the fact that in more than half of the
sessions, at some time the rat ‘goes to sleep’ at the
home base for several minutes. This allows us to select
a long period of arrest and examine directly the angular
and radial components of the rat’s positions (we con-
vert the cartesian positions to polar coordinates since
the rat tends to stay close to the walls). We thus
identify a long period at which the angular position is
nearly constant in the time series graph of the position
(Fig. 2).

We check the radial component during this interval,
to eliminate the possibility that the angular constancy
corresponds to a period of motion along a radius.

The noise level of the tracking system is then directly
visible in the graph as the range of variation of SD
during the arrest period. Quantifying the noise level is
achieved either by plotting the SD values themselves
(Fig. 3), or by plotting the estimated density function of
SD during arrest and looking at its range (Fig. 4).

Fig. 1. The Testing Environment. Bars, small circles and rectangles
represent the various objects: vertical dark bar at 12 o’clock — pipe,
other dark bars and circles-large distal objects, empty rectangles —
proximal small flat objects.
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Fig. 2. A time series of angular positions of rat c2 in session 4. The X-axis represents time (in s, from the beginning of the session), and the
Y-axis represents the corresponding angular position (in degrees). A period of arrest is indicated.

Fig. 3. A time series of SD values of rat c2 in session 4. X-axis: time (in seconds), Y-axis: the spatial spread of the points within a temporal
window of half-width 0.2 s, centered at the corresponding instant. Y-axis units are in cm s−1. The period of arrest corresponding to the one in
Fig. 2 is indicated.

The second method uses the estimated density func-
tion of the values of SD for the whole session (see
Section 2).

The curve in Fig. 5 has a clear inflexion point at a
certain value of the SD. Such point is present in all
curves of all sessions. We interpret it as indicating the
noise threshold value.

The two methods (direct observation and inflexion
point) give very close values when both are applicable.
We therefore use the second when a ‘going to sleep’
interval is not available during that session. Once the

threshold is determined we classify the points which
have a SD value smaller than threshold, as arrests.
Episodes of motion are now defined as intervals be-
tween two successive arrests.

3.2.2. Attributing a numerical 6alue to episodes of
motion

There appear to be episodes of motion that develop
into full-blown progression, and episodes that do not.
We therefore try to quantify the extent to which motion
develops during an episode, summarizing each episode
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by its maximal SD value, measured within that episode.
For standard statistical reasons (the existence of more
than one order of magnitude within the range of values)
we further apply a log transformation and take as the

numerical attribute of an episode the logarithm of the
maximal SD (log max SD) value obtaining during that
episode. We can now examine the distribution of the
values for the episodes of motion within a given session.

Fig. 4. Density estimation of SD during the periods of arrest in session 4 of rat c2. The X-axis represents the values of the SD at the time of
arrest, and the Y-axis value is an estimate of the value of the density function for the corresponding SD value. In a density curve the values on
the Y-axis are such that the area enclosed between the curve and the lines x=x0, x=x1 is equal to the probability that a randomly picked point
has a value lying between x0 and x1, e.g. the total area under the curve is 1. The distribution indeed has the typical form of a distribution of noise,
and the rightmost value (5.5) corroborates the value obtained as an inflexion point of the density function in Fig. 5.

Fig. 5. The X-axis gives the values of the SD measure, and the Y-axis value is an estimate of the value of the density function for the
corresponding SD value during session 4 of rat c2. Here we would set the noise level at 5.5.
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Fig. 6. Left: an estimate of the density function for log max SD values during episodes of motion (session 4 of rat c2). Right: the maximum
likelihood Gaussian mixture model of the data whose empirical density estimation is shown on the left. The X- and Y-axes are as in 6 left, the
dashed lines show the individual gaussian components. The solid line shows the pondered sum of the gaussians, as estimated by the EM algorithm.

3.2.3. Establishing multi modality
To estimate the distribution of the log max SD values

of all the episodes in a session, we use a density
estimator (see Section 2) (Fig. 6 left).

As can be seen, the curve for this session has three
‘bumps’. Given the amount of smoothing used for the
density estimation (see Section 2) these bumps represent
genuine underlying clustering of the data around three
typical values. Examination of the curves for all rats
and sessions reveals that all the curves are multi-modal;
a selection of curves is presented in Fig. 7.

Curves consisting of n non-overlapping gaussians
would warrant a classification of the data into n distinct
categories of episodes of motion. The underlying com-
ponents of a process can, however, be reconstructed
even in the presence of overlap. Fitting a gaussian
mixture model to the data reveals the optimal parame-
ters: the number of components and the proportions;
means; and SDs of the gaussians. We applied the EM
algorithm (see Section 2) to determine the maximum
likelihood parameters. We used as initial values rough
estimates of the parameters, obtained by direct observa-
tion of the empirical curves. The number of compo-
nents in the data corresponding to Fig. 6 left was found
to be 3. For each session the number of components is
checked by computing the ratio of the logarithms of the
likelihood of n components over that of n−1. Three
components is thus seen to be the right choice for all
sessions (PB0.01), except four sessions, in which a
4-components model seems genuinely better. Fig. 6
right shows the gaussian mixture model corresponding
to the empirical density plotted in Fig. 6 left.

3.2.4. Practical determination of the threshold between
two components

Given the distinction between modes of motion, how
should we determine the threshold under which an
episode counts as, e.g. belonging to the first component
(leftmost) rather than to the second? In the case illus-
trated in Fig. 6 there is some overlap between the first
two modes. We could therefore set the threshold some-

where between 1 and 1.5. Because of the overlap, any
choice of threshold value within this interval leads to a
misclassification of some segments. If we wish to clas-
sify according to which component is more likely to
generate the episode, we should use the equal likelihood
cutoff 1.3. Alternatively, suppose we want to be certain
that none of the segments classified as belonging to the
first component belongs to the second. In that case we
should set the threshold as small as possible (here the
graph shows that the probability that an episode with
log max SD value of B1 has a virtually null probabil-
ity of belonging to the second component). Finally, if
we want to be certain that none of the segments
classified as belonging to the second component be-
longs to the first one, then we should set the threshold
as large as possible (here the graph shows that the
probability that an episode with log max SD value of
more than 1.5 has a virtually null probability of having
been generated by the first component). In summary,
an individual episode of intermediate maximal value (in
the case of Fig. 6 between 1 and 1.5) cannot be said
with certainty to belong to one of the two modes. This,
however, does not refute the claim that there is a
distinction; rather, it suggests that there might exist a
fuller description of the rat’s behavior (in terms of
inter-limb articulation) under which every episode can
unequivocally be classified as belonging to a given
mode of motion.

In order to further establish that the components
correspond to distinct modes of motion, we study the
variability of the values of the medians of each compo-
nent. Fig. 8 shows a boxplot that summarizes the values
of medians for the components obtained in a large data
set (seven daily sessions of eight rats). As shown, al-
though there is a large amount of variability for the
values of the medians in each component, the central
values do not overlap across components (except for a
few outliers). To use an analogy; there are fast walkers
and slow runners, but even the best walkers walk
slower than bad runners run.
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4. Part II: application to rat stopping behavior

We can now study the correspondence between be-
havior patterns that were previously established ad
hoc, and the various modes of progression. One such
pattern is stopping. It has been previously defined in a
study performed in our lab in the following way:

‘When exploring a new environment a rat alternates
between progressing (i.e. walking forward or running)
and stopping: it progresses forward, then stops by
performing so-called closing steps (in which the step-
ping leg lands besides the contralateral leg instead of
landing ahead of it), then freezes and/or performs ver-
tical scanning movements while staying in place. Dur-
ing staying in place it may perform sideways and/or
backward steps or steps in place, with each of its legs,
or even step forward for a few steps’ (Golani et al.,
1993).

What has been scored so far as stopping is thus a
mode of motion distinct from both arrest and full
progression. It has been defined heretofore intuitively,
as a classical ethological behavior pattern or by set-
ting an arbitrary (though reasonable) threshold value
for velocity (Collins et al., 1995; Cools et al., 1997;
Gingras and Cools, 1997). Parsing the rat’s behavior
into ‘stops’ and ‘progressions’ by setting a cut-off
point between immobility and motion (such as ‘if the
rat does not leave a 50×50 cm square within half a
second, call that a stop’) does not warrant the distinc-
tion, however. We cannot be sure a priori that the
distinction between ‘stopping’ and ‘progressing’ is cat-
egorical. Full arrest and running are clearly distinct,
but where does ‘stopping’ end and ‘progressing’ begin?
In other words, does ad hoc ‘stopping’ coincide with
any of the distinct modes dictated by the statistical
properties of the data?

Stopping is intuitively associated with low maximal
velocities (i.e. low max SDs) and low spatial spread.
The leftmost component in our graphs is similarly
characterized by low MaxSD, but is it also circum-
scribed in space? A-priori, an animal could cover an
unbounded distance while not leaving the first mode.

4.1. Lingering episodes

In our hooded rats, the leftmost component con-
sisted of segments during which motion was detectable
but never reached values much higher than noise level.
To examine the hypothesis that stopping corresponds
to not leaving the first mode, we lump together each
bout of first mode episodes (that by definition consist
of alternation of segments in the first mode and ar-
rests) into a compound lingering episode. A progres-
sion episode is thus an interval during which there
was no occurrence of either sub-noise data points or
segments belonging to the first mode, and a lingering
episode is defined as a segment beginning at the end
of a progression and ending at the beginning of the
next progression episode. A rat’s trajectory is thus
partitioned into progression episodes separated by
simple or compound lingering episodes. A formalized
version of this process of automatic segmentation is
presented in Appendix A.

Fig. 7. Analog of Fig. 6: the curves were selected from different rat-
sessions. They reflect the overall quality of the fit between empirical
(left) and model estimation (right) within our data set.
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Fig. 8. Box plots of the median values of log max SD for each of the components for each session, all rats pooled. The data for the ‘first gear’
box, for instance, consist of the medians of the first component of the model for each of the sessions. The range between the bottom and top of
each box contains the central half of the data; each box is cut by a line whose height is that of the median of the data; two whiskers extend from
the top and the bottom of each box to the farthest observations that are still no more than two box lengths away from the sides of the box.
Outliers are shown as individual horizontal lines.

4.2. Establishing the spatial extension of lingering
episodes

Fig. 9 shows side-by-side boxplots of the quartiles of
the spatial extension of lingering episodes for all rat-
sessions. The median value and the upper quartiles for
each session are consistently low (typically B20 cm for
the median and B40 cm for the upper quartiles). There
are, however, a few extreme outliers in the distribution
of the spatial extension values. They might correspond
to misclassified progression episodes (as explained in
Section 3.2.4, the meaning of the threshold value is only
probabilistic).

The fact that lingering episodes have a limited spatial
extension is not trivial: it means that when exploring, a
hooded rat does not cover large distances without
leaving the first gear. We can therefore think of linger-
ing in the open field in normal hooded rats as a ‘staying
in place’ mode. This construct is not defined in terms of
position in objective space, but purely in terms of the
rat’s own behavior. Having shown that it has the two
properties of (i) not exceeding the lowest first gear
‘velocity’, and (ii) being circumscribed in space, we have
established its correspondence to the previously used ad
hoc stopping pattern. Like its predecessor, the new
definition of stopping implies staying in the same loca-
tion; unlike its predecessor it provides a precise, rat-
defined algorithmic specification of ‘the same location’.
Furthermore, as illustrated in Fig. 8, all a rat’s stopping
locations during a session can be acquired by the push

of a button. They can be represented as points, in terms
of averaged coordinates of stopping locations without
dwell time (Fig. 10a), as bubbles whose center repre-
sents stopping location, and whose size represents dwell
time (Fig. 10b), and as line traces of the path followed
by the rat during lingering episodes (Fig. 10c). In Fig.

Fig. 9. Box plots of the quartiles (lower, median and upper) for the
spatial spread of lingering episodes for each session, all rats pooled.
The data for the ‘medians’ box, for instance, consists of the medians
of the spatial spread values for each of the sessions. For further
explanations see Fig. 8.
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Fig. 10. (a) The stopping locations, each represented as the averaged
coordinates of a stopping episode. (b) Stopping locations with dwell
time: each stopping episode is represented by a circle centered at the
(averaged) stopping location, with a radius proportional to the dura-
tion of the stopping episode. (c) Line traces of the path followed by
the rat during lingering episodes. (d) Line traces of the path followed
by the rat during progression episodes.

5. Part 111: the generality of our method

Is our method applicable to any data set of a time
series of x, y coordinates sampled at a rate of at least 10
Hz/s? Is it applicable to, e.g. mouse behavior? Can it
distinguish modes of motion in this behavior, and if so,
how many gears do mice use and what are the velocities
that characterize the various modes? Do mice have a
lingering mode, and if so, what is the spatial spread of
lingering episodes? While a detailed comparison to rats
is beyond the scope of the present study, preliminary
results might provide a somewhat wider perspective. To
tackle these questions we examined four male C57BL/
6J (C57) and four male Balb/cJtau (Balb) mice, 65 days
old, experimentally naive, housed in groups of four,
given unlimited access to food and water. Observations
were performed in a 3.30 m diameter arena Each mouse
was exposed to the arena once for a 30 min session. All
other videotaping conditions and procedures were simi-
lar to those used in the rat study.

Fig. 11 presents the distributions of the log-trans-
formed SDs (left) and their decomposition (right) dur-
ing one session of a male Balb mouse (top row) and one
session of a male C57 mouse (bottom row). The distri-
butions are given as estimated density functions. In
both strains the decompositions show the three gaus-
sian components of the Gaussian Mixture Model as
estimated by maximum liklihood and their sum, exactly
as in Section 3.2.3. It can be seen that the typical modes
also exist in these mice, although their specific values
are different.. This patterning applied to all eight mice.

10d we show the trace left by progression segments, to
illustrate the contrast between lingering and
progressing.

Fig. 11. Left: an estimate of the density function for log max SD values during episodes of motion of a session of a Balb mouse (top), and a C57
mouse (bottom). Right: the maximum likelihood Gaussian mixture models of the data whose empirical density estimations are, respectively shown
on the two graphs on the left. The dashed lines show the individual gaussian components. The solid line shows the pondered sum of the gaussians,
as estimated by the EM algorithm.
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Table 1
The specific values obtained in the C57 and BALB mice

BALB meanC57 mean (SD)Measure
(SD)

1. Path length (m) 136 (58)158 (25)
2. Lingering max SD (cm s−1) 11.24 (1.07)12.8 (1.09)

25.27 (1.3) 19.29 (1.2)3. Second component max SD
(cm s−1)

4. Third component max SD 61.55 (1.25) 40.44 (1.23)
(cm s−1) (log)

0.19 (0.04)5. Proportion of first compo- 0.23 (0.07)
nent episodes

6. Proportion of second com- 0.22 (0.08) 0.25 (0.1)
ponent segments

0.53 (0.14)7. Proportion of third compo- 0.52 (0.09)
nent segments

21 (6.8)8. Spatial spread of lingering 17 (2.2)
(cm)

9. Spatial spread of second 37.04 (35) 27.1 (20)
component segments (cm)

10. Spatial spread of third 133 (95) 106 (82)
component segments (cm)

1. A distinction among several (and not necessarily
two) modes of motion based on their velocity profi-
les (the ‘gears’ phenomenon).

2. The relationship between the velocity and the spatial
spread characterizing each of the modes (e.g. how
far does an animal typically progress without leav-
ing first gear?).

3. The locations of successive episodes performed in
the same gear and separated by visits to other
locations (e.g. how compactly distributed in space
are temporally distinct first gear episodes, or, to
what extent does the animal tend to stay in place in
the same or nearby locations).

In our arena, hooded rats indeed show a linkage be-
tween these parameters: they show three modes of
motion; their intermittent first gear motion tends to be
circumscribed in space and successive episodes across
visits to same vicinity tend to be clustered in space
(these clusters being termed principal places; Tcherni-
chovski et al., 1996). This patterning, however, does not
necessarily apply to other strains, preparations, and
environments. Preliminary observations suggest the op-
posite: In some strains, lingering is not circumscribed in
space; some strains use during particular stages of the
exposure to the environment very short, and during
other stages very long, movement segments; and the
number of objects in the environment affects the com-
pactness and number of places established by an ani-
mal. A comparative framework is thus provided by the
dissociation into modes, each mode being characterized
by a velocity profile, relative frequency, and a spatial
spread. In this study we formalize only the first two
aspects of movement that were confounded: that of the
existence of different modes, and that of their respective
spatial spread within an episode. The next obvious
question, not handled yet, is that of the spatial spread
of lingering across successive episodes. This would lead
us into a dynamic definition of the notion of ‘place’.

While the notion of place plays a central role in the
neurosciences, in place learning (Morris, 1984;
Whishaw and Mittleman, 1986; Silva et al., 1998;
Whishaw, 1998), navigation (Thinus-Blanc, 1996; Eti-
enne et al., 1998; Knierim et al., 1998), the study of the
hippocampus (McNaughton et al., 1996; Poucet and
Benhamou, 1997; O’Keefe and Burgess, 1996; Burgess
et al., 1998), foraging behavior (O’Brien et al., 1989,
1990), and the behavioral study of exploratory behavior
(Eilam and Golani, 1989; Golani et al., 1993; Tcherni-
chovski and Golani, 1995; Tchernichovski et al., 1996,
1998), there is as yet no definition of the behavior that
marks a place. Once we have shown that a particular
mode of motion is circumscribed in space we can follow
its spatial spread across episodes and obtain a dynamic
description of its unfolding. In our hooded rats, staying
in place appears to be clustered around a small number
of spatially distinct locations. This suggests that stay-

We summarize the results obtained for median values
and proportions of the gaussian model, as well as
spatial spread of lingering and progression in Table 1.

6. Discussion

Detailed studies of rat exploratory behavior done in
our lab (Eilam and Golani, 1989, 1990, 1994; Eilam et
al., 1989; Golani et al., 1993; Tchernichovski and
Golani, 1995; Tchernichovski et al., 1996, 1998) and by
others (Whishaw and Tomie, 1995; Cools et al., 1989,
1997; Gingras and Cools, 1997; Szechtman et al., 1998,
1999) revealed that in a novel environment rats estab-
lish an intricate structure of routes and places, includ-
ing a home base, excursions that are performed from
that home base and back to it, and principal places.
Most of these findings were based on an assumption
that there is, in rodents, a clear-cut distinction between
progressing and stopping. The problem with that dis-
tinction was that it was based on an implicit decision
(Beer, 1980), and it required labor-intensive direct ob-
servation on large amounts of data. For the data used
in the present study, for example, one would have to
look in slow motion at 40 h of video recording.

Increasing uneasiness with this, often arbitrary dis-
tinction, and a demand for high throughput phenotyp-
ing of rodent behavior (Nolan et al., 1997) resulted in a
search for an algorithmic definition that would parti-
tion the flow of behavior into intrinsically defined units
by ‘the push of a button’. This search revealed that our
previous work confounded three geometrical aspects of
movement:
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ing-in-place-behavior defines places in this rat’s opera-
tional world. Such a notion of place, obtained through
the study of the clustering of staying-in-place episodes,
has the advantage of being defined precisely in terms of
behavior, so that we do not have to set an a priori size
for a place. For instance, a place situated at the home
base could be extended much more than, say, a less
familiar place. The validity of a place should be further
supported by its connectivity to other places via move-
ment-segments, or the performance of incoming ballis-
tic movement-segments from relatively long distances.
It would also be interesting to examine the correspon-
dence between behaviorally and electrophysiologically
defined places. Electrophysiologically defined place-
fields could monitor the animal’s location regardless of
whether the animal lingers or stops repeatedly in partic-
ular locations. It could also be that the two constructs
partly or fully coincide.

When arena size is changed, the inter-stop distances
undergo a corresponding change of scale (Golani et al.,
1993). What happens to the spatial spread of individual
lingering episodes? Comparison of the spatial spread of
lingering episodes of rats in our arena and in a 20 times
smaller arena suggests that the spatial spread of stop-
ping episodes taken individually does not undergo scal-
ing (unpublished results). In other words, the space
covered while staying-in-place appears to be invariant
under a drastic re-scaling of the environment. This
suggests that while in the stopping mode, the rat’s
reference frame is its own body rather than the environ-
ment at large. The distinction between staying in place
and progressing might thus correspond to the tradi-
tional distinction between investigating and exploring
(Berlyne, 1960; Poucet et al., 1986; Thinus-Blanc, 1996).

Finally, the segmentation into stops and progressions
also occurs in insects (Miller, 1979; Collins et al., 1994),
nematodes, fish (O’Brien et al., 1989), lizards (Pi-
etruska, 1986), birds (Pienkowski, 1983), and mammals
(Kenagy, 1974). It would be interesting to see whether
our analysis carries over to species in which similar raw
data are collected.

The algorithms established so far compute the num-
ber of modes of motion used by the animal, character-
izing each of them in terms of three quantities (a
measure corresponding to maximal velocity, frequency
distribution, and spatial spread). These algorithms also
establish the foundation for the formalization of two
additional algorithms that will isolate behaviorally
defined places, and quantify their size and compactness.
Each of these quantities characterizes an intrinsically
defined behavioral endpoint that can be used for the
phenotyping of rodent behavior. The main conceptual
gain of this study is thus the replacement of an intuitive
dichotomy based on an arbitrarily drawn line in the
continuum of our perceptions with a systematically
articulated framework that appears to correspond to

biological reality. The practical gain is an automatic
tool for phenotyping open field behavior.
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Appendix A

In this appendix we outline the whole process of
segmentation, starting with the raw data series and
noise level of the system, and ending with an actual
segmentation of the motion into episodes of distinct
modes. Having been formalized once, the process of
data segmentation into modes is now fully automated.

Automation

The EM algorithm requires a choice of initial values
for the parameters (see 2.3). These can be fed by the
user. Alternatively, let the EM algorithm run with a
variety of plausible initial values generated automati-
cally by the program, picking the result with maximum
likelihood. This increases the computational toll, but
liberates the whole process from further human inter-
vention, once the data are collected and the noise level
of the tracking system determined.

In summary, a schematized implementation of the
whole segmentation process, given a data set DATA
and a noise level o, involves the following auxiliary
functions:

Sdmove(x, Dt): computes for each data point x the
SD of the positions within a temporal window of width
Dt centered at x. The width of the window is set by the
user according to the temporal resolution deemed rea-
sonable. In our rat studies, for example, we set Dt at 0.4
s because it equals the duration of the rat’s shortest
arrests.

EM (dataset, k, initial guess): returns the parameters
(i.e. proportion, mean and SD for each component) of
maximum likelihood for a gaussian mixture with k
components, starting the iterative algorithm with the
user-provided initial guess of proportion, mean, and SD
for each component. The function also returns the
likelihood value. The output is, thus, a couple: [parame-
ter, likelihood].
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Em–auto (dataset, k): This function returns parame-
ters for a gaussian mixture model of k components
without being provided with an initial guess. It pro-
ceeds as follows:
� pick a random set of initial guesses for the propor-

tions, i.e. a set of k-tuples between 0 and 1, whose
sum is 1.

� Run EM for each choice of proportions with the
natural guess for means and SDs [e.g. if the propor-
tions are (0.3, 0.4, 0.3), choose as initial guess for the
mean of the first component the empirical mean of
the first 30% of the sorted dataset, for the mean of
the second component choose the empirical mean of
the portion of the data, set between the 0.3 percentile
and the 0.7 percentile, etc. . .

� pick the result with the highest likelihood.
It is now easy to define a version of EM which does

not even need a specification of the number of
components:

EM–fullauto(dataset): =compute EM (k, dataset)
starting with k=1, and stopping when the
log [likelihood (k components)/likelihood (k−1) com-
ponents], comes within the range of x2

2 with a chosen
level of probability.

With these tools, given a data set DATA and a noise
level o, the segmentation process is fully automatic:
� Compute stops by picking the points in DATA, such

that Sdmove(x, Dt)Bo.
� Define as segments the intervals between the end of

a sequence of stop points and the beginning of the
next one.

� Compute for each such segment the maximum of
Sdmove(x, Dt) within the segments, apply log trans-
form and call the resulting data set log MaxSd.

� Run EM–fullauto(log MaxSd).
� Compute (from the components outputted by EM–

fullauto) the values of logMaxSd which separate the
first component from the second, the second from
the third etc. . . call these thresh1,2, thresh2,3 etc.
Having obtained a segmentation, each segment is

attributed a mode according to its logMaxSd value (if
the value is smaller than thresh1,2 the segment is in
mode one, if the value is between thresh1,2 and thresh2,3

then the segment is in mode two, etc. . .).
In order to check the spatial spread of motion per-

formed without leaving the first mode, an additional
processing is defined:
� define motion segments as those segments not be-

longing to the first mode.
� Now lingering segments are defined as the intervals

between the end of a motion segment and the begin-
ning of the next motion segment. We can thus easily
compute the spatial spread of each lingering segment
and study their distribution compared to either that
of all the other modes or any of them taken
separately.

We thus have a process which produces automati-
cally a segmentation of the motion into modes, and
information about the spatial spread of each mode. The
implementation of the algorithm in the Mathematica
programming language is available by e-mailing the
authors.
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